PSG INSTITUTE OF ADVANCED STUDIES - COIMBATORE - 641 004

Course	: CALCULUS AND ITS APPLICATIONS
Course Code	: 15IUHM101/15IGAM101/15IUFM101
Semester	: 1
Faculty	: Dr. C. VEERAMANI

Prerequisite :

- Basic concepts of functions and graphical representation.
- Basic concepts of algebra, trigonometry and two-dimensional geometry

Course objectives and course outcomes:

Course	Course Outcomes		
Objectives	Upon completion of the course the students will be able to		
1. To provide in depth knowledge of calculus, differential equations and vector calculus	CO1 analyze functions and their graphs and compute their limits and derivatives		
	CO2 sketch the region of integration, set up the limits in appropriate order to evaluate integral and interpret double/multiple integrals as area/volume		
	solve first order differential equations and demonstrate their understanding of how physical phenomena such as mixing problems, Newton's law of cooling and free oscillations are modeled by first order differential		
2.To facilitate the students to use the knowledge of calculus in their respective field of study	equations CO4 implement various solution methods for solving second order differential equations		
	CO5 determine gradient of a scalar field, divergence and curl of vector fields and to interpret their physical meaning		
	CO6 utilize line integral in vector fields to find work done and to apply Green's, Stoke's and Gauss divergence theorems to calculate flux and circulation		

Text Books:

- 1. Thomas G B and Finney R L, "Calculus and Analytical Geometry", Pearson Education, New Delhi, 2012.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", Wiley India Pvt Ltd, New Delhi, 2012.

Reference Books:

- 1. Wylie C R and Barrett L C, "Advanced Engineering Mathematics", Tata McGraw-Hill, New Delhi, 2013.
- 2. Peter V.O Neil, "Advanced Engineering Mathematics", Cengage, New Delhi, 2010.

Web Sites:

- 1. www.math.ucsd.edu/~wgarner/math20a/limcont.htm
- $2. \ \underline{tutorial.math.lamar.edu/Classes/CalcIII/MultipleIntegralsIntro.aspx} \\$
- 3. www.math.oregonstate.edu/home/programs/undergrad/.../change.html
- 4. <u>http://hyperphysics.phy-astr.gsu.edu/hbase/vecal.html</u>

SESSION PLAN:

Week	Topics	Assignments / Tutorial / Tests
1	BRIDGE COURSE ON BASIC MATHEMATICS: Number system, partial fraction, fundamental theorem of algebra, relation between roots and coefficients, synthetic division, Trigonometry and hyperbolic functions-basic formulas, differentiation and integration –basic formulas, graphs of basic curves. (Motivation and simple problems only).	
2	DIFFERENTIAL CALCULUS: Basic concepts - Limits, continuity and problems based on limits, continuity, and discontinuity.	
3	Differentiation, functions of several variables, partial derivatives, total derivatives, concepts and practice problems.	
4	Taylor's formula for function of two variables.	
5	INTEGRAL CALCULUS: Double integrals - double integrals over rectangles.	
6	Double integrals as volumes, region of integration and graphical representation. Fubini's theorem (concept and statement only),	Tutorial 1
7	Double integrals in polar form. Changing the order of integration and practice problems.	Assignment 1
8	ORDINARY DIFFERENTIAL EQUATIONS OF FIRST ORDER: Basic concepts, separable differential equations.	
9	TEST WEEK	CA Test 1
10	Exact differential equations, integrating factors, linear differential equations, Bernoulli equations and practice problems. Modeling - mixing problems, Newton's law of cooling.	
11	LINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER: Homogeneous linear equations of second order, linearity principle, initial value problem, general solutions.	Tutorial 2
12	Second order homogeneous equations with constant co-efficient, simple problems related to their fields, Euler – Cauchy equation.	
13	Solution by variation of parameters, modeling free-oscillations. VECTOR CALCULUS: Gradient of a scalar field, directional derivatives.	Assignment 2
14	Divergence of a vector field, curl of a vector field and practice problems.	
15	TEST WEEK	CA Test 2
16	Integration in vector field. Line integrals, vector fields, work, circulation and flux.	
17	Path independence, Conservative fields, Surface integrals.	
18	Green's, and Gauss divergence theorem (concepts and statements only).	
19	Stoke's theorem (concept and statement only), evaluation of line, surface and volume integrals. Applications of these concepts related to their disciplines.	
20	TEST WEEK	CA Test 3

EVALUATION COMPONENTS:

Sl. No	COMPONENT	C A	MARKS
1	TESTS	25	
2	ASSIGNMENT	15	50
3	TUTORIALS/OPEN BOOK TEST	10	
4 FINAL SEMESTER EXAMINATION			50
TOTAL			100

Prepared by Dr. V. Veermani